

University of Peradeniya Sri Lanka

Transmittance Multispectral Imaging for Edible Oil Quality Assessment

Authors

Hashan Kavinga Weerasooriya Undergraduate Faculty of Engineering University of Peradeniya kavingaweerasooriya@eng.pdn.ac.lk

Sanjaya Lakmal Herath Undergraduate Faculty of Engineering University of Peradeniya <u>e14189@eng.pdn.ac.lk</u>

Don Yasiru Ranasinghe Undergraduate Faculty of Engineering University of Peradeniya <u>e14273@eng.pdn.ac.lk</u>

Chaminda Bandara Research Assistant Faculty of Engineering University of Peradeniya <u>chaminda.bandara@eng.pdn.ac.lk</u>

Dr. Roshan Godaliyadda Senior Lecturer Faculty of Engineering University of Peradeniya roshangodd@ee.pdn.ac.lk

Dr. Parakrama Bandara Ekanayake Senior Lecturer Faculty of Engineering University of Peradeniya <u>mpb.ekanayake@ee.pdn.ac.lk</u>

Prof. **Terrence Madhujith** Professor Faculty of Agriculture University of Peradeniya <u>madhujith@yahoo.com</u>

Outline of the Presentation

- Overview of the Edible (Coconut) Oil Adulteration and Existing Detection Methods.
- Multispectral Imaging for Food Quality Analysis.
- Proposed Multispectral Imaging System.
- Sample Preparation.
- Proposed Image Processing Algorithm.
- Results, Discussion and Conclusion.

Overview of the Edible (Coconut) Oil Adulteration

Coconut Oil is Mainly Used

- As a Cooking/ Frying oil
- For Skincare and Haircare products
- To produce Pharmaceuticals
- Industrial products such as Detergents and Emulsions

We Report

Coconut Oil is Commonly Adulterated Using

- Palm Oil
- Argemone Oil
- Cottonseed Oil
- Second grade coconut oil
- Used Coconut oil

75% of coconut oil used for cooking in Sri Lanka, unsuitable for consumption

Source : <u>https://www.newsfirst.lk/2018/09/18/75-of-coconut-oil-used-for-</u> cooking-in-sri-lanka-unsuitable-for-consumption/

Written by Staff Writer 18 Sep, 2018 | 3:17 PM

Hazardous Trans fat found in adulterated coconut oil sold in market

Thursday, July 13, 2017 - 01:00

Share: f 🔰 🚯 🖂

Source : http://www.dailynews.lk/2017/07/13/business/121777/hazardous-transfat-found-adulterated-coconut-oil-sold-market

Detection Methods

Conventional Detection Methods

- Fourier Transform Mid Infrared (FT-MIR) Spectroscopy
- Colour Tests such as Sodium azide, Hexabromide
- Differential Scanning Calorimetry (DSC)

Disadvantages of Conventional Detection Methods

Need human

inspection

Highly Laborious

Multispectral Imaging for Food Quality Analysis

Multispectral Imaging is used to

- Detect Adulteration Levels of Spices.
- Detect Contamination of Meat.
- Grade Fish Harvest.

Advantages of Multispectral in Food Quality Analysis

Chemical free assessment

Environmental Friendly – No Chemical Wastes

Automatable

Proposed Multispectral Imaging System

Sample Preparation

• Pure palm oil and coconut oil samples were purchased from reputed edible oil brands available in the country.

Testing Samples

Testing Samples were prepared by mixing palm oil with coconut oil at 0, 5, 10,,40 % ($V_{palm \ oil}/V_{total}$ %) and replicated for 15 realizations.

Validation Samples

16 samples were prepared with known adulteration levels of 2, 4, 6,......36 % $(V_{palm oil}/V_{total} \%)$ for the validation of the proposed method.

<u>RGB Images of the Adulterated Samples</u> <u>of Coconut Oil with Palm Oil</u>

Image Preprocessing

01. Dark Current Reduction

 $P[\lambda] = S[\lambda] - D$

where, $P[\lambda]$ is the dark current removed image at wavelength λ , $S[\lambda]$ is the raw image at wavelength λ and D is the dark current image

02. Median Filtering

$$P^{*}[i,j] = \frac{1}{N} \sum_{k=-w}^{w} \sum_{l=-w}^{w} P[i+k,j+l]$$

where, $P^*[i, j]$ is the updated value of the pixel i, j after the median filtering P[i, j] is the pixel value of the dark current subtracted image at i, j, w is the suitably chosen window size and N is the number of pixels in the window.

Algorithm

01. Fisher's Discriminant Analysis

This is a dimension reduction/feature extraction method that aligns axis such that projected data are well separated by

- (i) Maximizing the distance between projected class means.
- (ii) Minimizing the within class variances.

Steps of FDA

Projected Dataset

Algorithm CONT.

02. Bhattacharya Distance

- Spectral intensity values of each adulteration level observed along the eigenvectors forms an approximate Gaussian distribution.
- The Bhattacharya distance was calculated with respect to the dimension reduced non adulterated (0%) sample.

$$B(f_{y0}, f_{yp}) = \frac{1}{8} (\mu_{y0} - \mu_{yp})^T \left(\frac{C_{y0} - C_{yp}}{2}\right)^{-1} (\mu_{y0} - \mu_{yp}) + \frac{1}{2} ln \left[\frac{det \frac{C_{y0} - C_{yp}}{2}}{\sqrt{det(C_{y0}) \ det(C_{yp})}}\right]$$

where, $B(f_{y0}, f_{yp})$ is the Bhattacharyya distance between two multivariate Gaussian distribution functions f_{y0} and f_{yp} ; μ_{y0} , μ_{yp} are the mean vectors; and C_{y0} , C_{yp} are the covariance matrices of classes Y_0 and Y_p , respectively.

Results and Discussion

- A functional relationship was observed, $Y = 0.01094X^2 + 2.202X$ with $R^2 = 0.9876$, where Y is the Bhattacharyya distance and X is the adulteration level as a percentage.
- Calibration model estimated adulteration levels with $R^2 = 0.9779$ for the validation samples.

Conclusion

- The developed MSI setup can be used to implement a system to detect the adulteration level of coconut oil samples with palm oil successfully.
- The multispectral imaging system and the detection process can be further developed to identify other adulterants as well as identify reused coconut oil samples.
- The proposed system can be deployed for in-situ oil quality estimation using an IoT based system with minimum human interaction and operational cost.

References

[2]

- [1] R. Pandiselvam, M. R. Manikantan, S. V. Ramesh, S. Beegum, and A. C. Mathew, "Adulteration in Coconut and Virgin Coconut Oil," pp. 19–22, 2019.
 - G. W. K. Prabhath *et al.*, "Multispectral Imaging for Detection of Adulterants in Turmeric Powder," in *Optical Sensors and Sensing Congress (ES, FTS, HISE, Sensors)*, San Jose, California, 2019, p. HTu3B.3, doi: 10.1364/HISE.2019.HTu3B.3.
- [3] W. G. Chaminda Bandara *et al.*, "Validation of multispectral imaging for the detection of selected adulterants in turmeric samples," *J. Food Eng.*, vol. 266, p. 109700, Feb. 2020, doi: 10.1016/j.jfoodeng.2019.109700.
- [4] S. Yadav, "Edible oil adulterations: Current issues, detection techniques, and health hazards," *Int. J. Chem. Stud.*, vol. 6, p. 5, 2018.
- [5] R. B. Lockwood and T. W. Cooley, *Hyperspectral Imaging Remote Sensing: Physics, Sensors, and Algorithms*. Cambridge University Press, 2016.
- [6] T. Kailath, "The Divergence and Bhattacharyya Distance Measures in Signal Selection," *IEEE Trans. Commun.*, vol. 15, no. 1, pp. 52–60, Feb. 1967, doi: 10.1109/TCOM.1967.1089532

University of Peradeniya Sri Lanka

Thank You