

Assessment of Fish Quality Through Multispectral Imaging

Authors

Sanjaya Lakmal Herath Undergraduate Faculty of Engineering University of Peradeniya e14189@eng.pdn.ac.lk

Don Yasiru Ranasinghe
Undergraduate
Faculty of Engineering
University of Peradeniya
e14273@eng.pdn.ac.lk

Hashan Kavinga Weerasooriya
Undergraduate
Faculty of Engineering
University of Peradeniya
kavingaweerasooriya@eng.pdn.ac.lk

Chaminda Bandara
Research Assistant
Faculty of Engineering
University of Peradeniya
chaminda.bandara@eng.pdn.ac.lk

E.M.M.B. Ekanayake
Research Assistant
SL Technological Campus
Colombo
mevane@sltc.ac.lk

Dr. Vijitha Rohana Herath Senior Lecturer Faculty of Engineering University of Peradeniya vijitha@eng.pdn.ac.lk

Dr. Roshan Godaliyadda
Senior Lecturer
Faculty of Engineering
University of Peradeniya
roshangodd@ee.pdn.ac.lk

Dr. Parakrama Bandara Ekanayake
Senior Lecturer
Faculty of Engineering
University of Peradeniya
mpb.ekanayake@ee.pdn.ac.lk

Outline of the Presentation

- Fish Quality Assessment.
- Multispectral Imaging for Food Quality Analysis.
- Proposed Multispectral Imaging System.
- Sample Preparation and Image Capturing
- Proposed Image Processing Algorithm.
- Results and Conclusion.

Fish Quality Assessment

Conventional Detection Method

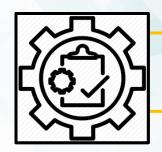
- Through human inspection.
- Need to develop a standard method to determine fish quality.

Disadvantages of Conventional Detection Methods

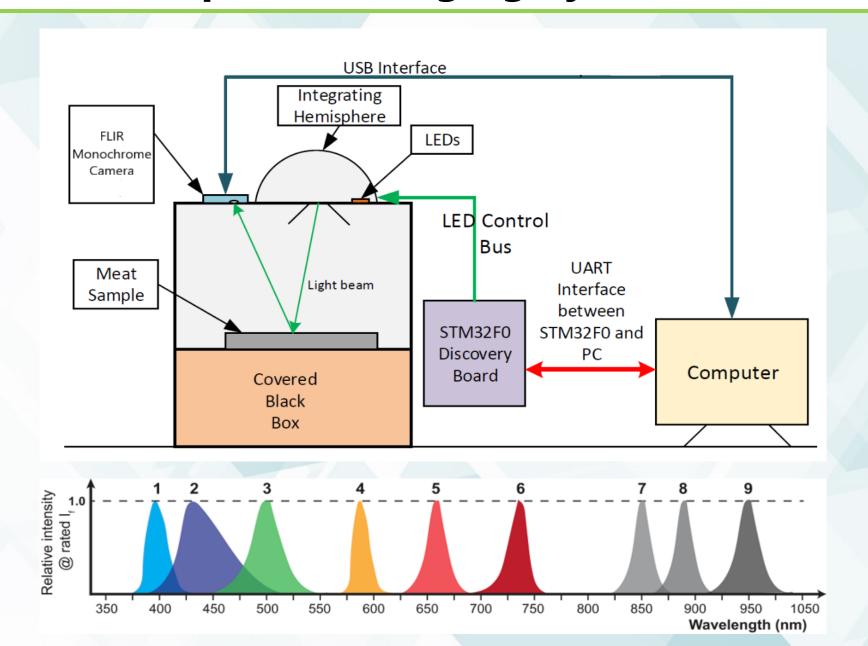
Multispectral Imaging for Food Quality Analysis

Multispectral Imaging is used to

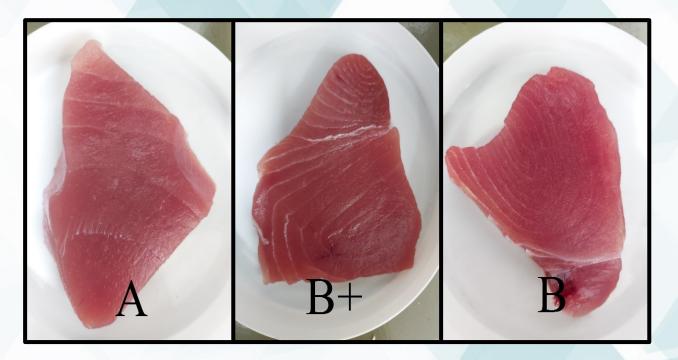
- Detect Adulteration Levels of Spices.
- Detect Contamination of Meat.
- Identify the Adulteration Level of Edible Oils


Advantages of Multispectral in Food Quality Analysis

Environmental
Friendly – No
Chemical Wastes



Automatable



Proposed Multispectral Imaging System

Fish Sample Preparation


- Fish samples obtained from a reputed fish exporting company.
- Fish can be graded into 6 different classes namely, A+, A, B+, B, B-, C.
- The samples were taken only from the 'TUNA' fish.

RGB Images of Different Fish Samples

Image Capturing

 9D Multispectral Image Data Set wavelengths – 405,430,505,590,660,740,850,890,950 (nm)

Monochrome HS Images

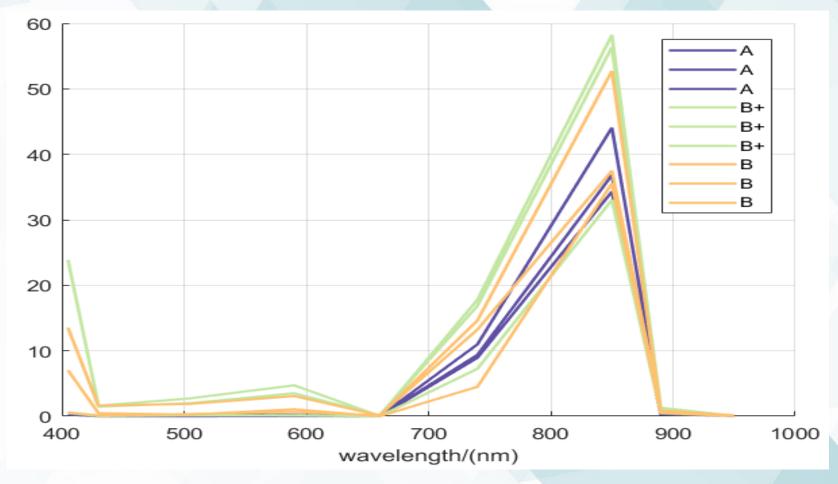
Image Preprocessing

01. Dark Current Reduction

$$P[\lambda] = S[\lambda] - D$$

where, $P[\lambda]$ is the dark current removed image at wavelength λ , $S[\lambda]$ is the raw image at wavelength λ and D is the dark current image

02. Median Filtering

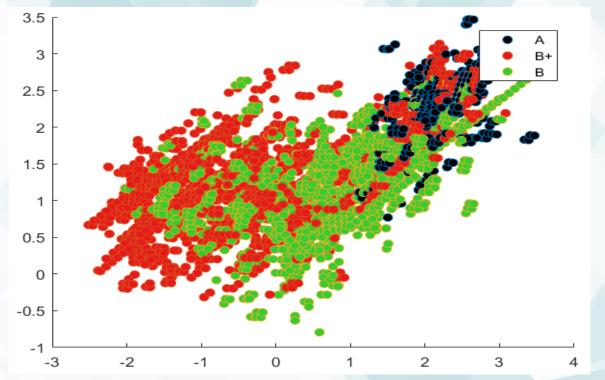

$$P^*[i,j] = \frac{1}{N} \sum_{k=-w}^{w} \sum_{l=-w}^{w} P[i+k,j+l]$$

where, $P^*[i,j]$ is the updated value of the pixel i,j after the median filtering P[i,j] is the pixel value of the dark current subtracted image at i,j, w is the suitably chosen window size and N is the number of pixels in the window.

Algorithm

01. Mean Spectral Signature

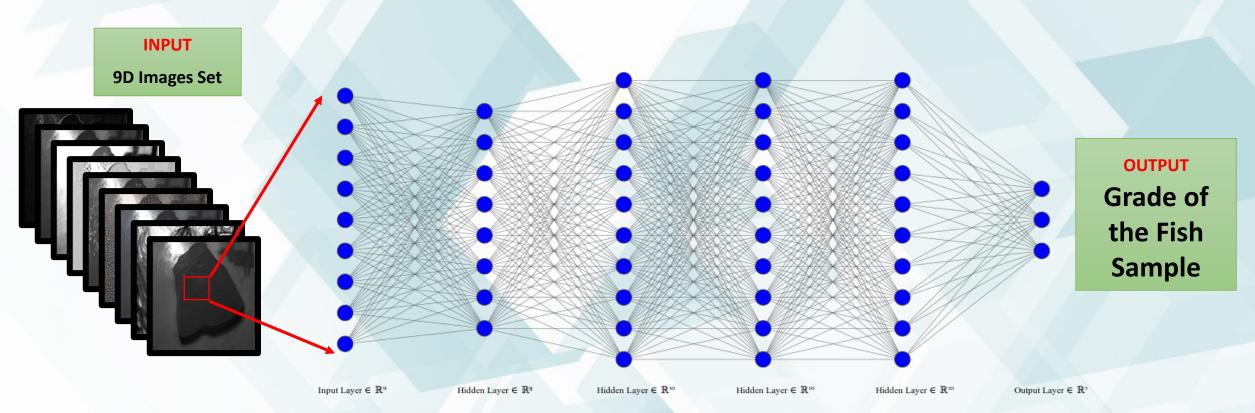
The mean variation of reflectance of a samples with respect to wavelengths


Mean Spectral Signature

Algorithm CONT.

02. Fisher's Discriminant Analysis

This is a dimension reduction/feature extraction method that aligns axis such that projected data are well separated by


- (i) Maximizing the distance between projected class means.
- (ii) Minimizing the within class variances.

Projected Data Set

Algorithm CONT.

03. Neural Network based classifier

Neural Network

Results

Grade	Precision/%	Recall/%	F1-score/%
A	87	90	88
B+	91	98	88
В	92	95	94
Avg	90	90	90

Conclusion

- The developed MSI setup can be used to implement a system to detect the fish quality.
- To improve the accuracy of the classification results, need to obtain images of several samples.

References

- [1] G. Hyldig and D. M. B. Green-Petersen, "Quality Index Method—An Objective Tool for Determination of Sensory Quality," *J. Aquat. Food Prod. Technol.*, vol. 13, no. 4, pp. 71–80, Apr. 2005, doi: 10.1300/J030v13n04_06.
- [2] Hyperspectral Imaging for Food Quality Analysis and Control. Elsevier, 2010.
- W. G. Chaminda Bandara *et al.*, "Validation of multispectral imaging for the detection of selected adulterants in turmeric samples," *J. Food Eng.*, vol. 266, p. 109700, Feb. 2020, doi: 10.1016/j.jfoodeng.2019.109700.

Thank You